Preconditioned Implicit Solution of Linear Hyperbolic Equations with Adaptivity

نویسندگان

  • Alison Ramage
  • Lina von Sydow
  • Stefan Söderberg
چکیده

This paper describes a method for solving hyperbolic partial differential equations using an adaptive grid: the spatial derivatives are discretised with a finite volume method on a grid which is structured and partitioned into blocks which may be refined and derefined as the solution evolves. The solution is advanced in time via a backward differentiation formula. The discretisation used is second order accurate and stable on Cartesian grids. The resulting system of linear equations is solved by GMRES at every time-step with the convergence of the iteration being accelerated by a semi-Toeplitz preconditioner. The efficiency of this preconditioning technique is analysed and numerical experiments are presented which illustrate the behaviour of the method on a parallel computer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

A case study of flood dynamic wave simulation in natural waterways using numerical solution of unsteady flows

Flood routing has many applications in engineering projects and helps designers in understanding the flood flow characteristics in river flows. Floods are taken unsteady flows that vary by time and location. Equations governing unsteady flows in waterways are continuity and momentum equations which in case of one-dimensional flow the Saint-Venant hypothesis is considered. Dynamic wave model as ...

متن کامل

Preconditioning of implicit Runge-Kutta methods

A major problem in obtaining an efficient implementation of fully implicit RungeKutta (IRK) methods applied to systems of differential equations is to solve the underlying systems of nonlinear equations. Their solution is usually obtained by application of modified Newton iterations with an approximate Jacobian matrix. The systems of linear equations of the modified Newton method can actually b...

متن کامل

Preconditioning and Parallel Implementation of Implicit Runge-kutta Methods

A major problem in obtaining an efficient implementation of fully implicit RungeKutta (IRK) methods applied to systems of differential equations is to solve the underlying systems of nonlinear equations. Their solution is usually obtained by application of modified Newton iterations with an approximate Jacobian matrix. The systems of linear equations of the modified Newton method can actually b...

متن کامل

A Nonlinearly Preconditioned Inexact Newton Algorithm for Steady State Lattice Boltzmann Equations

Most existing methods for calculating the steady state solution of the lattice Boltzmann equations are based on pseudo time stepping, which often requires a large number of time steps especially for high Reynolds number problems. To calculate the steady state solution directly without the time integration, in this paper we propose and study a nonlinearly preconditioned inexact Newton algorithm ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003